Protecting the Past Using Tools of the Future: Archaeology Predictive Modeling

A Presentation by:
Russell Holter
Department of Archaeology and Historic Preservation

Tacoma Convention Center

Impacts to Cultural Resources
- Oil Spills
- Natural Disasters
- Wildfires

Beckett Point Example

Impacts to Cultural Resources

Regulatory Environment
- Federal
 - Indian Graves and Records
 - Archaeological Sites & Records
 - Section 106 (Federal Nexus – Stimulus Money)
- Washington State
 - State Environmental Policy Act SEPA
 - Shorelines Management Act
 - Forest Practices Act
 - Growth Management Act
 - Executive Order 0505
Washington State Laws
- Protects Native American graves on ALL non-federal lands: state/county/city/private lands
- Provides for penalties for knowing disturbance: Class C felony-
 > Up to five years in prison &/or $10,000 fine
 > Provides for civil action by tribe for violations to include damage/ emotional distress

Managing These Risks
- **Issues**
 - Non-renewable resources
 - Need to plan for projects costs
 - Reduce in-the-field surprises
 - Need to make technically sound, defensible decisions
 - Emergency Management
- **Solution**
 - Predictive Modeling
- **Benefits**
 - Build more accurate budgets
 - Reviews completed from Desktop
 - Complete Section 106 requirements

Preparing for Predictive Modeling
- DAHP Records Room
 > Manage over half-a-million paper documents and correspondence stored in multiple databases
- Virtual Records Room
 > Quickly and Efficiently Retrieve and Update Information
 > Make technical, legally sound decisions

Archaeology Data
- Extend Protection of Resources Through Analysis
- **Issues**
 - Archaeology Resources Need to be Considered Everywhere
 - Impossible (too expensive) to survey everything
- **Solution**
 - Predictive Modeling
- **Benefits**
 - Planning: Protect Resources by avoiding in the first place/ reduced need for mitigation
 - Prioritize Surveying and Money
 - Protect Additional Resources

What is a Predictive Model?
- A predictive model correlates the locations of known archaeological sites, and “negative” locations of sites, with environmental characteristics.
- For this model we used environmental data, GIS and probability (Bayesian) statistics to determine the probability of finding a site within a 100 x 100 foot cell.
Benefits of Modeling

- Apply advanced planning in a regulatory setting
- Quicker access to additional archaeology information/research for projects
- Consistent framework/approach using statistical methods
- Guides archaeological surveys and directs testing programs

Statewide Study Areas

Key Criteria for Selecting Data

- Available in GIS format or available for conversion to GIS format
- Easily obtainable from public sources
- Available for the entire state
- Available at a reasonable scale or resolution for the model
- Identified by archaeologists as relevant

Government Land Office Maps

- Late 1880s
- Georeferenced over 2,400 GLO maps
- Digitized features; Trails and Native American settlements or graves

Government Land Office Maps

Environmental Data Used for Modeling

- Value Data
 - Elevation
 - Slope Percent
 - Aspect
 - Distance to Water

- Categorical Data
 - Soils
 - Geology
 - Landforms
IACC 2014 – S53 Archeological Predictive Modeling

Elevation

Geology

Landforms

Summarize Groups to the Cell Level

- Geology
 - Alluvial Fans (Group 1)
 - Basalt (Group 2)
 - Rock Outcrops (Group 3)
 - Etc.

- Each cell is assigned a group for each environmental data set

Assign Groups to Each Cell

Calculate Probabilities

- Calculate Probabilities for each data group
 - Probability that it occurs throughout the Study Area
 - Probability that an archaeological site occurs within that data group

- The probability of randomly finding an archaeological site
Assign Probabilities to Cells Based on Group

Geology Group 6
- Study Area Probability (0.775000)
- Archaeology Probability (0.806382)

Slope Group 2
- Study Area Probability (0.360714)
- Archaeology Probability (0.249387)

Elevation Group 4
- Study Area Probability (0.330935)
- Archaeology Probability (0.423274)

Etc.

Bayesian Probability Calculations

\[P(A|Vi) = \frac{P(Vi|A) P(A)}{P(Vi)} \]

\[= \frac{P(E1/A)P(E2/A)P(E3/A)P(E4/A)P(E5/A)P(A)}{P(E1)P(E2)P(E3)P(E4)P(E5)} \]

Example Conditions: Geol 6, Slope 2, Elev 4, Aspect 5, DTW 1

\[= (0.775000)(0.360714)(0.330935)(0.248200)(0.453571)(0.000445) \]

\[= 0.00225 \]

- Bayesian Probabilities Calculations do not require specialized statistical software – thereby making updating easier.

Bayesian Scores

- Important to note that Low or Very Low still have potential to have sites, simply a lower potential.

Evaluate Projects

Adding Confidence to Predictions

Conclusions

- Plan ahead, undiscovered sites are out there
- Does NOT replace ground surveys, but does help prioritize surveys and density of surveys
- Augments archaeologist’s knowledge of area prior to surveys being conducted
Collaboration

- Washington Department of Archaeology and Historic Preservation
- Washington Public Works Board
- Washington Department of Transportation
- Washington Department of Natural Resources
- Yakama Nation
- Suquamish Tribe

THANKS!!

Questions / Comments?

Russell Holter
Compliance Reviewer
(360) 585 - 3533
Russell.holter@dahp.wa.gov