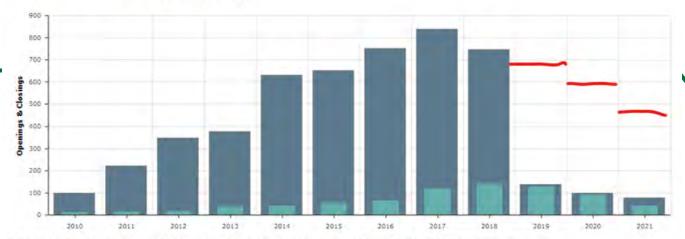
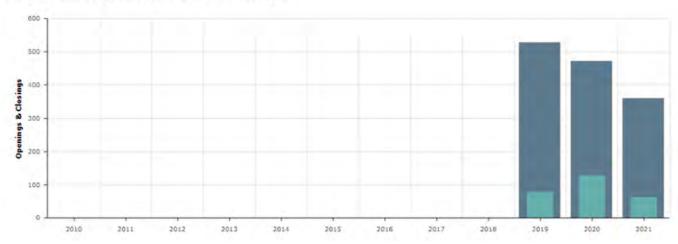
Winery and Brewery Wastewater Production and Management

Brett M. Converse P.E., Ph.D. Senior Wastewater Engineer Alex Fazzari, P.E., Area Manager


Outline

- Beer
- Wine
- Discharge Flows and Loads
- Treatment/Disposal
 - On-site
 - Discharge to Municipality
- Impacts
- Mitigation Strategies
- High Strength Surcharge


Micro Openings and Closings*

Beer

^{*} Starting in 2019, Taprooms are their own separate category, so for comparable numbers, add 2019 taproom numbers.

Taproom Openings and Closings*

Still Growing

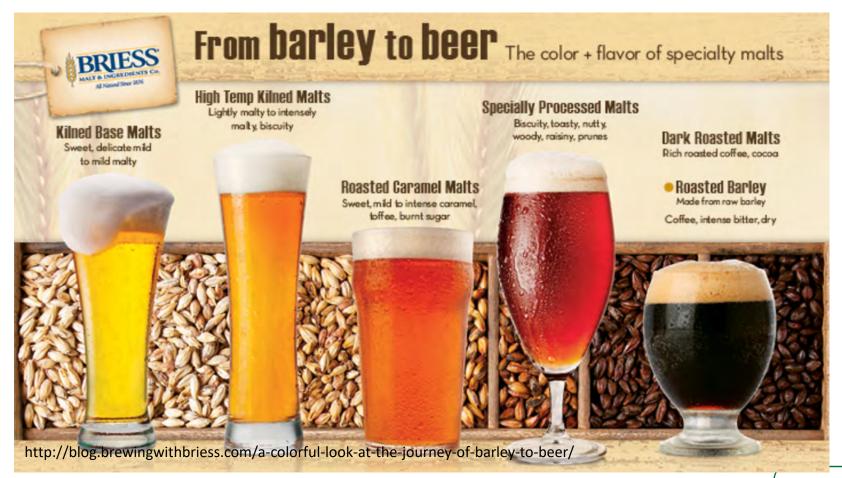
Recent U.S. Brewery Count

	2015	2016	2017	2018	2019	2020	2021	2020 to 2021 % Change
Craft	4,803	5,713	6,661	7,618	8,419	8,905	9,118	4.4%
Regional Craft Breweries	178	186	202	230	240	220	223	1.4%
Microbreweries	2,684	3,319	3,956	4,518	1,917	1,898	1,886	-0.6%
Taprooms					3,091	3,471	3,708	6.2%
Brewpubs	1,941	2,208	2,503	2,870	3,171	3,302	3,307	0.2%
Large/Non-Craft	44	67	106	104	111	120	129	7.5%
Total U.S. Breweries	4,847	5,780	6,767	7,722	8,530	9,025	9,247	2.5%

2021 - 7.9%

Making Beer

- Growing Grain (Barley, mostly)
- Malting
- Roasting
- Mashing
- Boiling hops (bitter, flavor, aroma)
- Fermenting (more hops)
- Bottle / Keg
- Cleaning and Sanitizing (a lot)

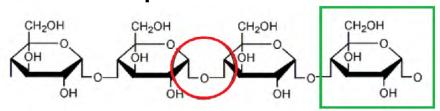


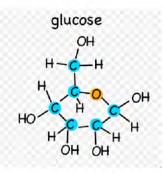
Malting

- Seep, Dry, Seep, Dry
- Small Root will Grow
- Germinate
- Keep in cool moist place
- Internal leaflet grow
- Stop germination
- Dry, clean you have pale malted Barley
 - Pale beers
- Roast as desired
 - Brown and dark beer

Roast

Why Malt


- Preps the Starches
- Develops Diastatic Enzymes
- Enzymes do all the work when mashing


- The grain has a lot of starch molecules
- Enzymes naturally in the grain
- Enzymes convert starch into plant food (sugar)
- Amylase (A and B)

- Amylase
- Biomolecule -Catalyze Biochemcial Reactions
- Starch into Fermentable Sugar
- Glucose for example

Amylase

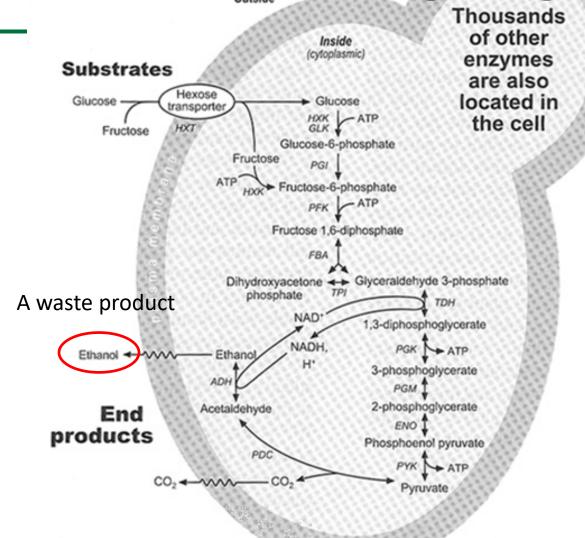
http://montessorimuddle.org

- Grain/water at 154 degrees for 60 minutes
- Amylase is an Enzyme
 - protein string bent and shaped into a specific
 3D shape, catalyze a reaction
- Convert Grain Starch into Sugars
- Active at specific temperatures
 - Low, not active
 - High, denature

- Done in a specific vessel
- After mashing liquid moved to boil kettle
 - Liquid is sweet wort
- Spent grain (2.2 to 5 lb per gallons)
- Cleaning mash vessel
 - Grain removed
 - Pushed into wheeled cart, then dumpster
 - Clean in place with high pressure water
 - High pH

Boiling Sweet Wort

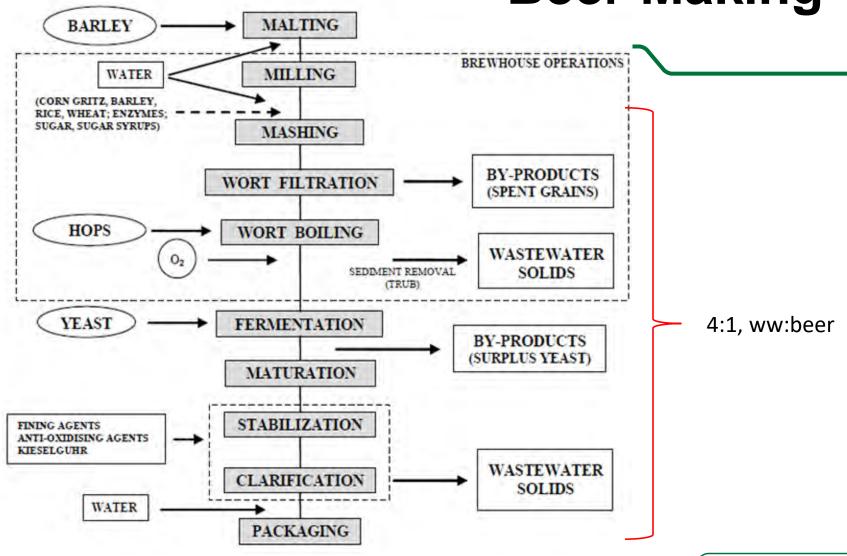
- Sweet Wort move to Boil Kettle
- Boiled for 60 minutes (sanitize)
 - Add Bittering hops (60-minute boil)
 - Add Flavor hops (15-minute boil)
 - Add Aroma hops (5-minute boil)
- Now you have hopped wort, moved to fermenter
- And another vessel to clean
- CIP, hot, high pH



Fermenting

- Hopped Wort cooled to ~<70 degrees
- Hopped Wort move to fermenter
- Plant food converted to alcohol
- "Beer" in fermenter
- Transferred to bottles, cans, kegs (also cleaning and sanitizing)
- Clean fermenter, CIP, High pH, Low pH sanitizer

Fermenting Sugar to Ethanol



Yeast

Boulton et al., 1006; Pretorious, 2000;

Beer Making

Making Beer Summary

- Growing Barley, off-site by farmer
- Malting, off-site by maltster
- Roasting, off-site by roaster
- Mashing, Starch to Sugar
- Boiling
- Hopping
- Fermenting
- Bottle / Keg (more cleaning)

Beer Wastewater

- 1 gallon of Beer (3-5) gallons of WW
- BOD
 - 1,500 mg/l, Low
 - 4,500 mg/l, average (large SD)
 - 35,000 mg/l, Dump bad batch (3.5%)
 - 55,000 mg/l, Imperial (9%)
- TSS
 - Function of solids capture (target 200<TSS<1000)
- pH < 3 ranges ph>10
- N & P, 30 to 100 mg/l
- Anytime, Year-round, can store ingredients
- Grains & Hops can't go down the drain

Impacts - Beer, Smallish

- 3 Barrel Brew House
- 375 gallons of ww
 - 1.65 EDUs hydraulic load just for brew
- BOD = 4,500 mg/l
 - 14 lb of BOD (~1 hp of air)
 - 24 EDUs organic load just for brew
- Grains don't go down the drain!

EDU at \$50/month

- 3-barrel brew house
- 1.65 EDUs hydraulic load
 - \$82 / month
 - \$0.11 per pint
- 24 EDUs organic load
 - \$1,220 / month
 - \$1.64 per pint
- The day discharged, not the next? 80 pounds of biomass (17.5%)

Impacts - Beer, Larger

- 10,000 Barrels per year
- 21 EDUs hydraulic
- 310 EDUs organic
- 4 to 7 days per week

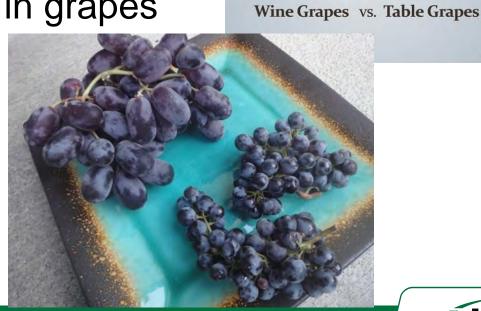
Fear Beer

- Concerned ? (Yes, but address)
 - Relative flow and load
 - 10,000 barrel/yr, 310 EDUs YES
 - 3-barrel batch, 24 EDUs (day of) Maybe
 - Existing capacity and ability
 - Growth, domestic and beer
- What to charge?
- Be fair Charge for service
- Fair Fare

Addressing Flow and Load

- Pre-treatment
 - pH adjustment
 - Flow equalize
 - Over days, over hours
 - Break up discharge to minimize impact.
 - Source separation
 - High strength manage separately
 - Low strength to sewer with surcharge fee?
- Actual treatment get to later

Wine



Wine

Wine Grape

- Smaller than table grapes
- Seeds
- Sugar already in grapes
- More sugar
- More juice
- Thicker skins

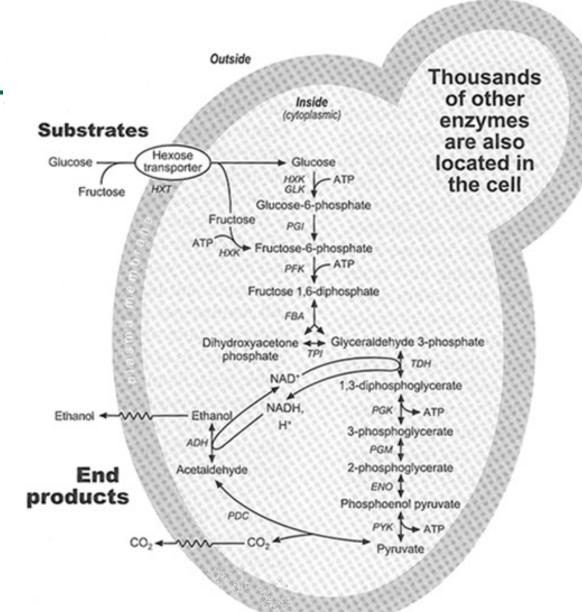
Grape Harvest

- Harvest, what comes into the winery
 - Grapes
 - Stems
 - Seeds
 - Pulp
 - Skins
 - Fresh Water
 - Chemicals, cleaning, pH adjustment, O₂
 scrubbing

Grapes

- What Winery Keeps
 - Grapes, relieved of Juice converted to wine
 - Must (Fresh Juice with skins, seeds, stems
 - Pomace = Solids
 - Stems
 - Seeds
 - Pulp
 - Skins

Grapes


- What Leaves the Winery
 - Wine
 - Lees (yeast cells, skins, other particles)
 - Wastewater
 - Carbon dioxide

Making Ethanol

- Glycolysis
- Glucose (Sugar) into pyruvate (1:2)
- And so on to Ethanol
- Complete pathway, 10 reactions
 - 1 molecule of glucose (6 carbons), into
 - 2 molecules of Ethanol (each with 2 C), and
 - 2 molecules of carbon dioxide (each with 1 C)

Boulton et al., 1006; Pretorious, 2000;

Making Wine (with apologies)

Juice

- 22% sugar (22 grams sucrose in 100 grams juice)
- $-C_{12}H_{24}O_{12} \rightarrow 4C_2H_5OH + 4CO_2$
- $-(100g \rightarrow 51g)$
- About 22% sugar turns into ~11% alcohol wine

Making Wine (with apologies)

- Remove Stems
- Crush (more like breaking)
- Pressing (get all the juice)
- Clarification of must (white)
- Condition must
- Ferment
- Press
- Tank
- Barrel
- Filter (clarified/stabilized)
- Bottle
- Age

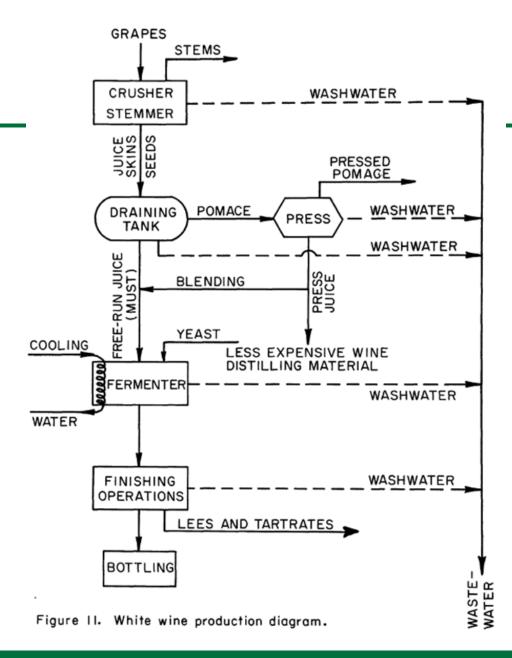
Clean

And

Sanitize

Throughout

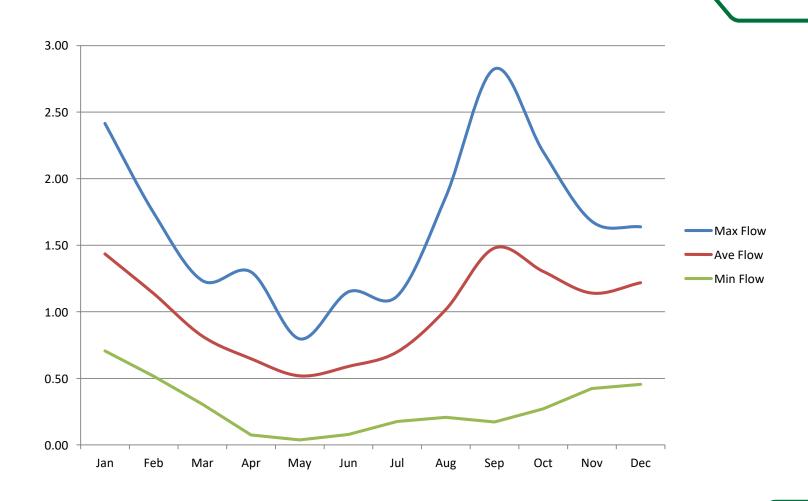
The


Process

GRAPES STEMS_ **CRUSHER** WASHWATER STEMMER MUST YEAST COOLING FERMENTER WASHWATER WATER WASHWATER FREE-RUN **PRESS** WINE PRESS **PRESSED** POMACE BLENDING WINE LESS EXPENSIVE WINE DISTILLING MATERIAL FINISHING **OPERATIONS** a) Racking b) Filtering c) Fining WASHWATER d) Refrigerating e) Aging LEES AND TARTRATES BOTTLING WASTE-Figure 10. Red wine production diagram.

Waste

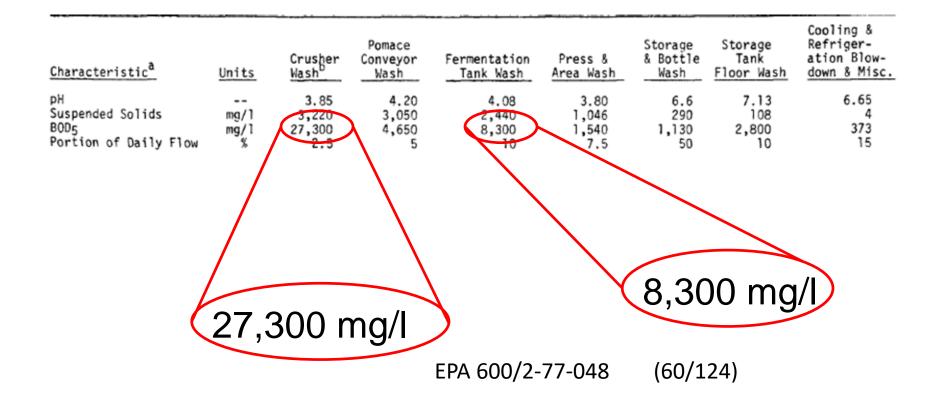
EPA-600/2-77-048


J-U-B ENGINEERS, INC.

Summary of Production

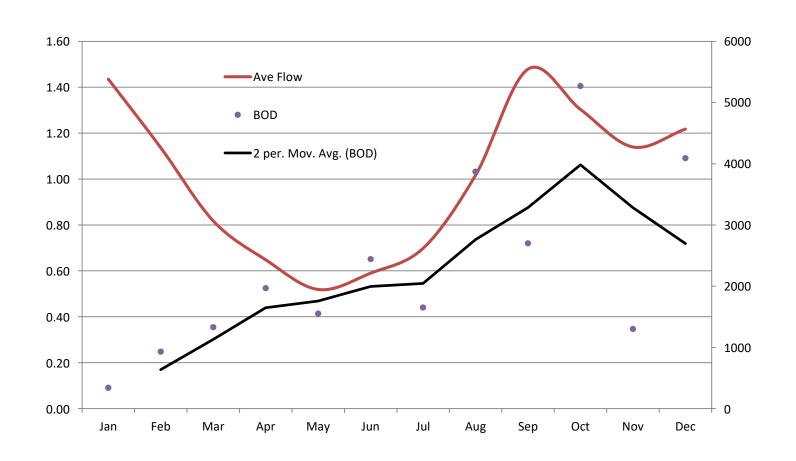
- Grapes are an Annual Crop; the industry is cyclic based on the season and winery activity
- Can not store grapes
- Different winemaking processes produce different wastewater
- Seasonal wastewater flows and loads

Normalized Flow


Characteristics

Characteristic ^a	Units	Crusher Wash	Pomace Conveyor Wash	Fermentation Tank Wash	Press & Area Wash	Storage & Bottle Wash	Storage Tank Floor Wash	Cooling & Refriger- ation Blow- down & Misc.
pH Suspended Solids BOD5 Portion of Daily Flow	mg/l mg/l %	3.85 3,220 27,300 2.5	4.20 3,050 4,650 5	4.08 2,440 8,300 10	3.80 1,046 1,540 7.5	6.6 290 1,130 50	7.13 108 2,800 10	6.65 4 373 15

EPA 600/2-77-048 (60/124)



Characteristics

Normalized Flow and BOD₅ mg/l

Trends in Industry

- Recover liquid waste, valuable
 - Juice (SBOD)
 - Alcohol (SBOD) Could be distilled
- Technology allows Separation
 - centrifuge, membrane, vacuum systems...
- Strength could be Dropping
- TSS managed on-site, dryer due to separation of liquid (valuable)

Lesson

- Could be Function of Scale
 - Small facility 1 wine : 5 wastewater
 - Large facility 1 wine : 1 wastewater
- Confirm Process
 - How much
 - How strong
 - When

Wastewater Production, Small

- 20,000 cases
 - 9 liters per case, (12 bottles per case, 0.75 liters/bottle)
 - 3:1 wastewater : wine (typical to high)
- 142,000 gallons per year
- 22,000 gallons in September
 - 20 pounds of BOD₅ / day
- 57,000 gallons in October
 - 70 pounds of BOD₅ / day (280 People)
- 22,000 gallons in November
 - 17 pounds of BOD₅ / day
- 41,000 gallons the rest of the year
 - 2.5 pounds of BOD₅ / day

Wastewater Production, Medium

- 300,000 cases
- 2.1 MG gallons per year
- 320,000 gallons in September
 - 300 pounds of BOD₅ / day
- 860,000 gallons in October (28,000 gpd)
 - 1,000 pounds of BOD₅ / day (4,300 People)
- 320,000 gallons in November
 - 250 pounds of BOD₅ / day
- 41,000 gallons the rest of the year
 - 40 pounds of BOD₅ / day (August) (170 People)

Winery Wastewater

- Seasonal Flow
- Seasonal Load
- Load Increases Rapidly
- Confirm
 - Small, not economical to maximize liquid recovery and manage solids
 - Large, economical to recovery

Now What?

- Wine Maker and Brewer
 - Just want to make product
 - Want the wastewater to just go away
 - Maybe, some municipal systems take it
 - Others cannot
- Municipality
 - The City Welcome here
 - WWTP Don't cause any issues

Mitigation

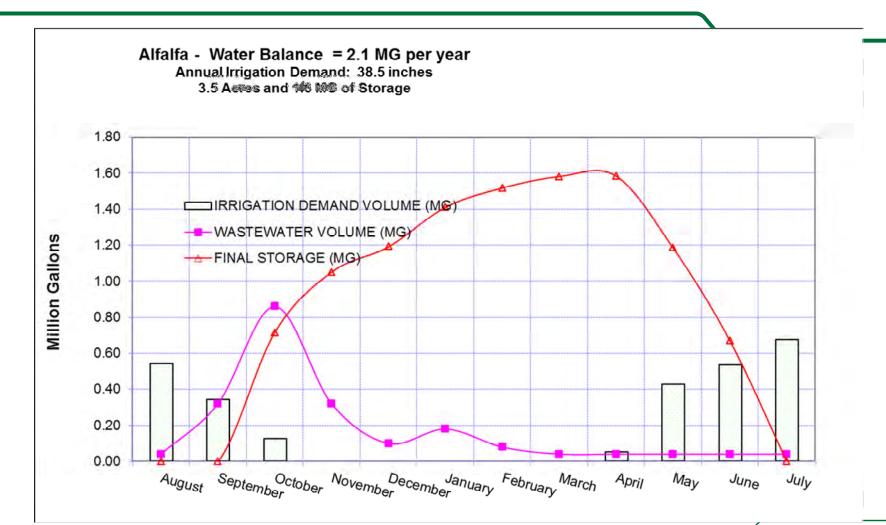
Applicable To:

- Beer
- Wine
- Hard Cider
- Cheese
- Yogurt
- Restaurants
- Super Stores
- Labor Camps

Warning!

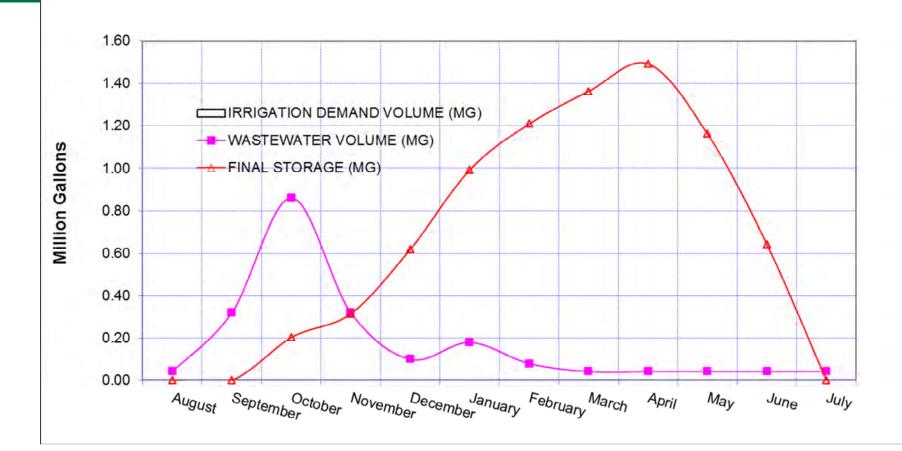
- Heavy Industry (potato, onion, fruit etc.)
 - Study specifically
 - Get independent help
- Data Center
 - Study specifically
 - Get independent help
 - Low strength
 - 75 degrees
 - 1.3 MGD per center

Treatment and Disposal


- Disposal, Answer this First
- The answer will control level of treatment
 - On site (very little, manage odors)
 - Irrigation, crop, landscaping
 - <u>Drain-field</u>, and other subsurface options
 - Evaporation
 - Off site
 - Surface water discharge (highly treated)
 - Industrial treatment facility (maybe none)
 - Municipal treatment facility (pre-treatment)
 - Irrigation someone else's crop (very little)

On-Site

- Irrigation, Medium Size 2.1 MG/year
 - Seasonal Discharge, irrigation season
 - Winter Storage
 - 3.5 Acres of Crop
 - 1.6 MG of Storage
 - Manage TDS
 - Industrial discharge
 - Facultative pond for treatment, settling basin
 - Aeration for odor control



On-Site

- Evaporation, Medium Size 2.1 MG/year
 - 10 Acre Evaporation Pond
 - Mechanical Evaporation → 2.5 Acres (location)
 - Settling basin to capture solids
 - Dredging plan
 - Aeration for odor control

Water Balance = 2.1 MG per year Evaporation from 10 Acres

Treatment for Disposal to a Municipal Sewer

- Local Limits
- BOD < 300 mg/l (match domestic)
- Surcharge
 - Limit BOD < 300 mg/l</p>
 - Not to exceed BOD < 1500 mg/l</p>
 - Pay XX \$/ pound discharged
 - \$0.25 per pound of TSS
 - \$0.30 per pound of BOD₅

Treatment for Disposal to a Municipal Sewer

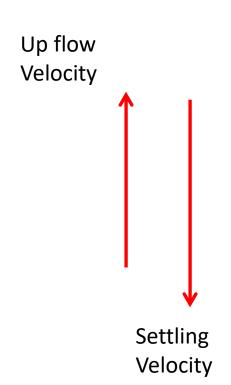
- Aerobic facultative lagoons
- Anaerobic
 - Granular Sludge ?
 - Followed by Aeration
- Activated sludge Conventional, SBR and MBR
- Fixed film bioreactors
- Moving bed Bioreactors
- Direct Discharge to a Municipality

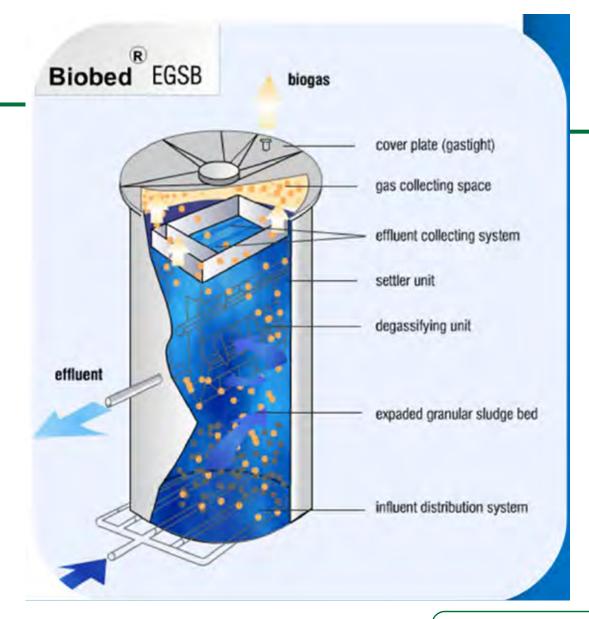
Treatment for Disposal to a Municipal Sewer (most likely?)

- Anaerobic
 - Granular Sludge
 - Followed by Aeration
- Activated sludge

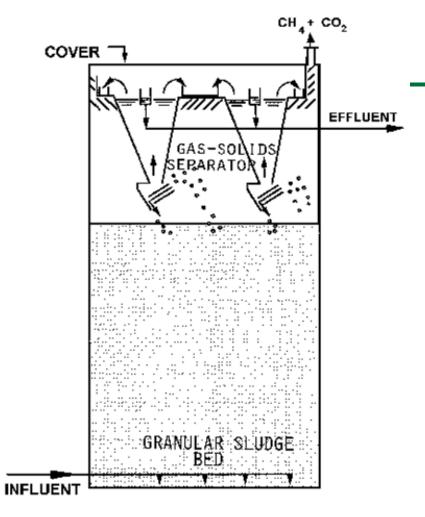
Direct Discharge to a Municipality

Granular Sludge


- Granular sludge
- Settles fast



- High loading rates are lowering capital cost for digestion.
- Followed by aeration
- Can survive periods without food? Yes.



Biothane Expanded Granular Sludge Bed

EGSB REACTOR (Biothane)

Package MBR

- Activated sludge Package MBR
- 5,000 gallons per day
- 100,000 gallons per day
- 2 mm screen before package MBR (included)

Package MBR

- Concentrated Oxygen, dense biology
- High quality reuse water
- Seeded with WAS (discharge to sewer)

Package MBR City of West Richland

50,000 gpd Re-use Ready

Direct Discharge

- Direct Discharge to a Municipality
- Minimum pre treatment
 - Lower TSS, skins settle in the sewer pipe
 - Adjust pH, concrete pipe, neutral pH, (dilution)
 - Generally easy to manage on-site
- What about BOD₅

Direct Discharge

- Example
- Medium Winery (300,000 cased)
- 860,000 gallons in October (28,000 gpd)
 - 1,000 pounds of BOD₅ / day
 - (4,300 People)

Biology to Treat, Approximate

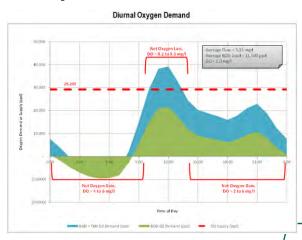
- Biomass needed for 1,000 pounds of BOD₅ / day
- 6850 pounds of biomass, about
- Increase in MLSS
 - -0.5 MG reactor \rightarrow from 2000 to 3640 mg/l
 - 2.58 MG reactor → from 2000 to 2320 mg/l
 - 6 MG reactor → from 2000 to 2140 mg/l
- 55,000 gallons of RAS/WAS (at 1.5%)
- 65 pounds of O₂ per hour
- 45 horsepower aeration

Managing Winery WW at WWTP

- Can you come up with the biology?
- Can you provide the air?
- Can you manage the extra biosolids?

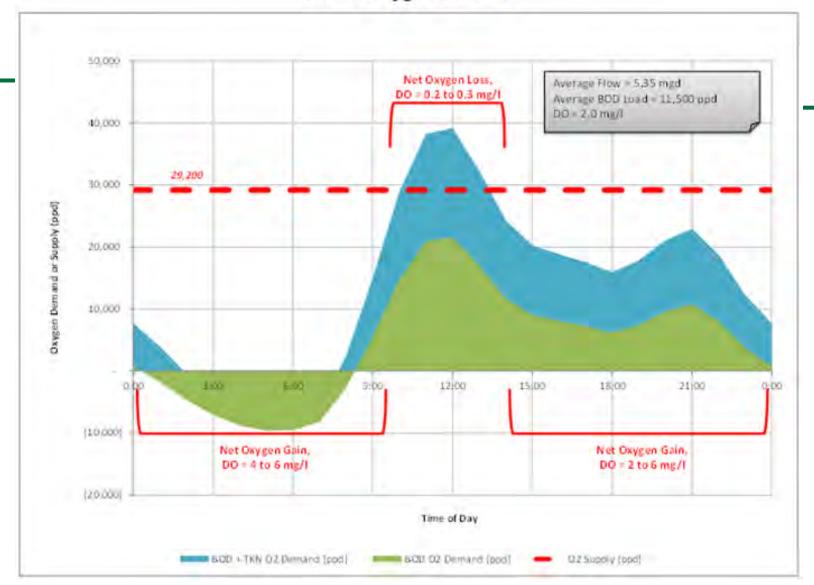
Managing Winery WW at WWTP

- Can you come up with the biology?
 - Likely, depending on time of day
- Can you provide the air?
 - Likely, depending on time of day
- Can you manage the extra biosolids?
 - 600 to 800 pound per day, dry
 - 2.3 tons per day of dewatered biosolids
 - maybe


Flow Equalization, Load Shift

- Large WWTP, Small initial winery flow
- pH adjustment tanks large enough to provide flow equalization on-site
- Meter discharge into sewer

As flow increased evaluate performance and the


need for pretreatment

And bank fees

Diurnal Oxygen Demand

High Strength Surcharge

- Uniform Cost for Uniform Service
- Pay a fee for extra service in lieu of pretreatment
- Discharge at night for a lower fee

Questions

SIGNATURE BREWS

