

Water Quality Monitoring in the Pacific Northwest

A look at common water quality tests, why they matter, and where do regulatory agencies fit in

The Bigger Picture

Your Role

How Testing Relates To Your Job

Roles

Regulatory Private entity Manager Tribal entity Municipal, county official, clerk Operator Technical assistance provider Interested party

Drinking Water Testing

Why Test?

Public health Environmental aspects Regulatory

Drinking Water Testing

General

Think About It

Required tests?

Where to find information? Monitoring and Compliance Schedule NPDES Permit Related project documents

National Primary Drinking Water Regulations

Primary Standards

Enforceable - apply to public water systems

Protect health by limiting levels of contaminants in drinking water

National Secondary Drinking Water Regulations

Secondary Standards

Non-enforceable guidelines – regulate contaminants that may cause cosmetic effects (skin or tooth discoloration) or aesthetic effects (such as taste, odor, color) in drinking water

Aluminum, chloride, fluoride, color, iron, etc.

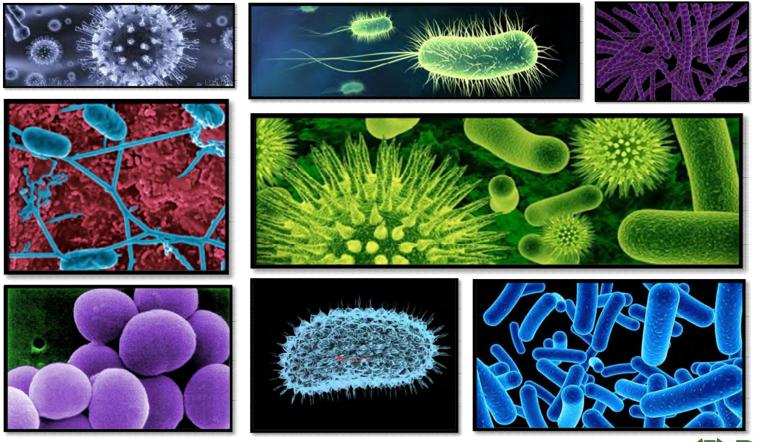
Comparison

Primary standards - Federal-level, legally binding mandates focused on public health

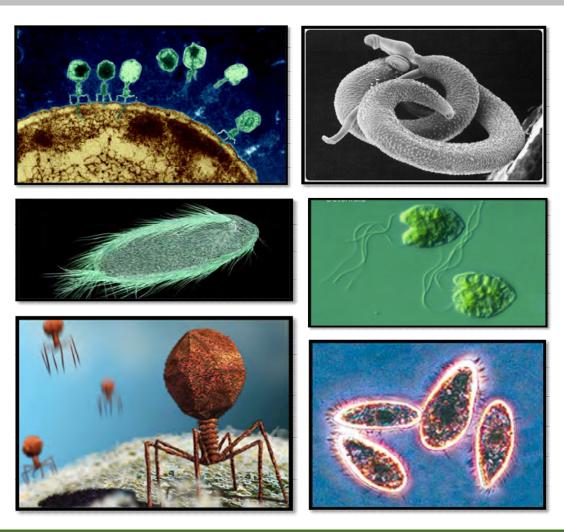
Secondary standards – Broader look at what makes public drinking water appealing and accessible

General Microbiology and Chemical Contaminants

Put on your lab coat



Don't Forget Your PPE!


Microbes

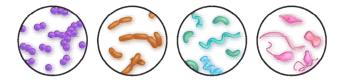
Electron Microscope

Microbial safety is based on **multiple barriers**, from catchment to consumer

Protection of resources

Proper selection and operation of treatment steps Management of distribution systems

Microbial Risks

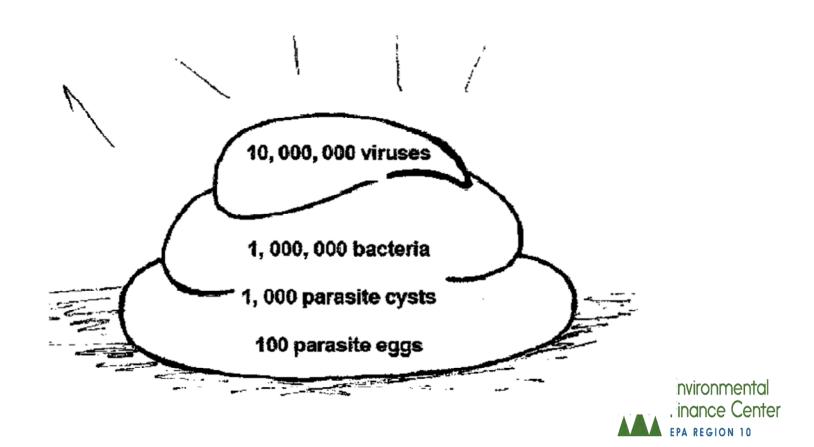

Greatest risks are associated with ingestion of water contaminated with human or animal feces (pathogenic bacteria, viruses, etc.)

Water quality can vary rapidly resulting in potential outbreaks

By detection, many people can be exposed

Bacterial Pathogens

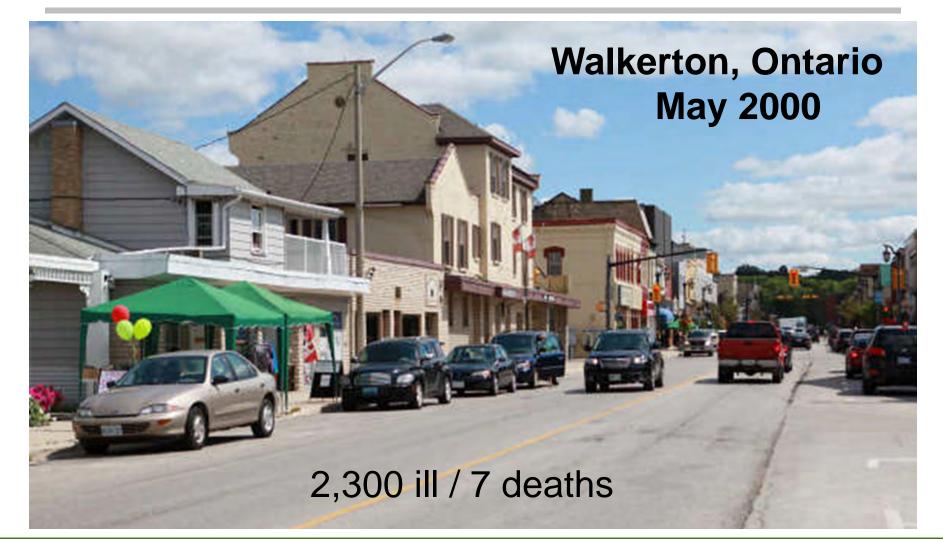
Most infect GI system – excreted in feces


Can grow in water and soil

Some easier to kill than others

Yuck!

- This is because ONE single gram of human faeces can contain up to:



Total Coliform and Fecal Coliform

"Bacteria Test"

Why Do We Care?

Contributing Failures

Microbial contamination of groundwater

Ran well(s) - no operational chlorinator

- Fictitious residuals operations sheets
- False labels
- Hid positive results
- No operator training / oversight

False reports

Delayed "Boil Order"

Total and Fecal Coliform

Walkerton was preventable

Monitoring residuals and bacteria are important tools to provide safe drinking water to communities

Where Are Coliform Bacteria Found?

Occur naturally in Animal and human digestive tracts (feces) Plant and soil material Sediment **Biofilms** Untreated water Ubiquitous, not pathogenic

Where Are Coliform Bacteria Found?

Most surface water supplies Some groundwater sources Agricultural runoff Wastewater influences Source water contamination

Source water contamination – soil runoff, WWTP effluents, septic tank failure, combined sewer overflows

Total and Fecal Coliform

Water industry accepts that if TC are present, conditions are right for pathogens to also grow

Does not mean they are present, but possible

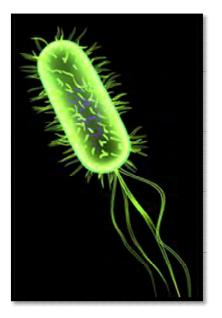
Total and Fecal Coliform Bacteria

Inactivated by treatment

Contamination may be due to Inadequate disinfection Regrowth in distribution system Contamination of distribution system

Examples - Open / faulty storage reservoirs, animal droppings

Total and Fecal Coliform Bacteria


Total coliforms in a Public Water System:

- Should be absent with adequate chlorine residual
- Not necessarily a health threat in itself
- Are an indicator of contamination
- Are a warning sign the system may be vulnerable to fecal contamination
- Additional sampling is required to assess extent of problem

E. coli Happens

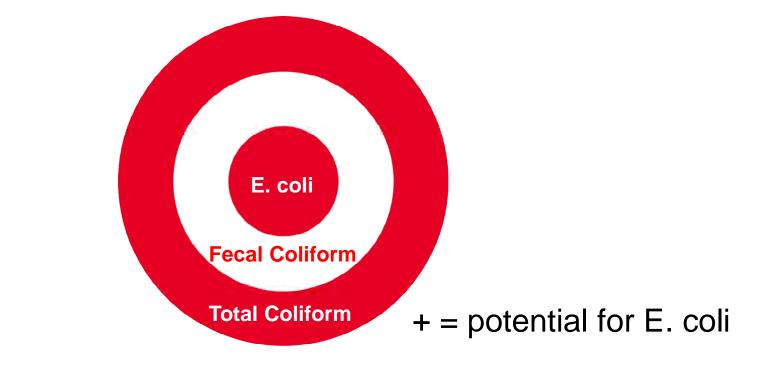
Present in human intestinal flora – not all pathogenic Humans - main carrier, followed by animals

Chipotle - raw vegetables Walkerton, Ontario, Canada 2000 Jack in the Box - Washington

Total and Fecal Coliform Bacteria

Detection of fecal coliform (or E. coli) can indicate contamination with fecal waste

Causes - line breaks, cross-connections, compromised source


Immediate steps to confirm, inform and protect consumers may be needed

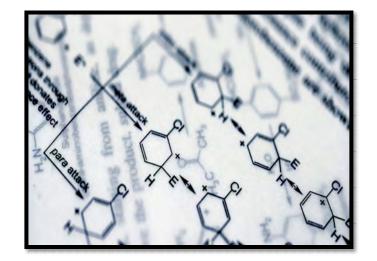
Attempt to determine problem and address it as quickly as possible

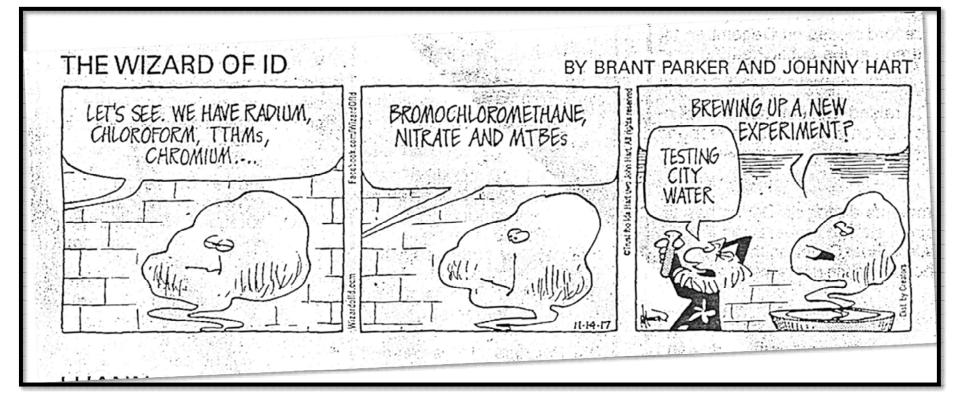
Indicator Organisms

Total Coliform - "indicator organism" for E. coli

Can have TC + and EC – Can't have EC + unless TC +

Other Contaminants


Drinking Water


Other Contaminants

Health concerns mainly from prolonged exposure

Occasionally from single incident (usually undrinkable - unacceptable taste, odor, appearance)

Inorganic Compounds

lOCs

Nitrates

NO₃

Inorganic Compounds – Nitrate

Essential component of living things

Major part of animal manure, human sewage waste, fertilizers - runoff unintentionally introduced to waterways

Can occur naturally in surface and ground water at low levels

Blue baby syndrome, thyroid, recurrent respiratory infections, spontaneous abortions, cancer

Arsenic

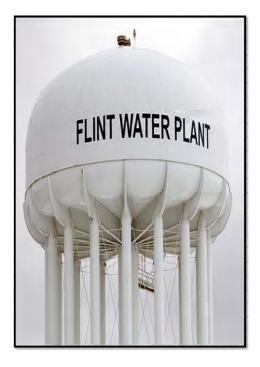
As

Inorganic Compounds – Arsenic

Occurs naturally in the common mineral arsenopyrite

When rocks erode - released into the soil and groundwater

Human activities – mining, smelting ores, historically used in wood preservatives, agricultural chemicals



Lead and Copper

Pb and Cu

Inorganic Compounds - Lead

Corroded lead service lines

Neurotoxin - detrimental effect on developmental processes (behavior, intelligence, overall life achievement)

Revised Lead and Copper Rule

Inorganic Compounds - Copper

Corrosive water - blue-green stains at copper piping joints or the mouth of a faucet

Cognitive diseases and deficits

Directly and indirectly related to the development of Parkinson's disease, Alzheimer's disease, Huntington disease

Synthetic Organic Compounds

SOCs

SOCs

Man-made, organic (carbon-based) chemicals

Used as herbicides, insecticides, pesticides

Agricultural areas, urban settings, industrial runoff

Atrazine, Glyphosate, 2,4-D, Alachlor, Lindane Acute and chronic health effects – nervous system, kidneys

Volatile Organic Compounds

VOCs

VOCs

Human-made chemicals Vaporize in air, dissolve in water

Pervasive in daily life – ubiquitous

Paint, carpet, vinyl flooring, upholstery, solvents, dry-cleaning chemicals, fuels, formaldehyde

Eye, nose, throat irritation, central nervous system damage

Asbestos

Asbestos

Corrosion to outdated asbestos cement pipes (prior 1980s)

Naturally occurring deposits

Debris from fires, floods, disasters

Chronic lung disease, mesothelioma

Disinfection By-Products

DBPs

DBPs

Formed when disinfectants (chlorine) interact with natural organic materials (surface water sources)

Over 600 DBPs identified (focus on a few) - THMs, HAAs, chlorite, bromate

Bladder cancer, small birth weight, miscarriages

Disinfection vs Disinfection Byproducts (DBPs): A Complex Balancing Act

Radiologicals

Rads

Radiologicals

Radionuclides – radioactive atoms

Small amounts in almost all rock and soil, dissolve in water

Gross alpha, beta emitters, radon, uranium, radium 226/228

Emerging Contaminants

Emerging Contaminants

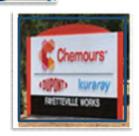
PFAS

Headlines

Starbucks announces ban of toxic "forever chemicals" in its food packaging

Dangerous PFAS Chemicals Are in Your Food Packaging

How the way we eliminate toxic PFAS from water also takes an environmental toll


Most face masks don't expose wearers to harmful levels of PFAS

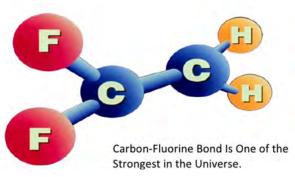
Getting PFAS out of makeup might be easier said than done

Forever chemical found in wells 25 miles from Dupont plant

Producers warned by EPA that PFAS is contaminating pesticides and food

PFAS

Basics



Teflon - first PFA chemicalDiscovered in 1938 by accidentCompounds that make our lives more convenient

Resist corrosion, withstand high heat, repel water Paper food packaging materials less likely to absorb grease

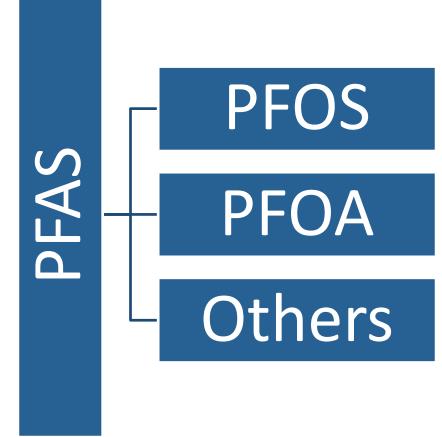
Carbon-Fluorine bond Chemically, thermally stable Water soluble, non-volatile Man-made Do not biodegrade Resist heat, oils, grease, stains, and water Widespread in environment

PFAS – Per- and polyfluoroalkyl substances

PFOS – Perfluorooctanesulfonic acid

The Science

PFOA – Perfluorooctanoic acid



PFOA and PFOS - most studied and regulated

Long and short chain

Long chain - more persistent and potent

PFTriA, PFDoA, PFUnA, PFDA, PFNA, PFHpA, PFHxA, PFPeA, PFBA, PFDS, PFNS, PFHpS, PFHxS, PFPeS, PFBS, PFPrS, PFOSA, PFHxSA, PFBSA, PFMOBA, PFMOPrA, PFMOAA, PFO4DA, PFO3OA, PFO2HxA, FtS 8:2, FtS 6:2, FtS 4:2, N-EtFOSAA, N-MeFOSAA, ADONA, PFECHS, F35-B, Nafion BP2, and GenX

Basics - Why the Concern?

Pervasive	
Persistent	
Bioaccumulate	
Adverse health effects	
Scarcity of information	
Lack of sufficient standards	

PFAS

Sources

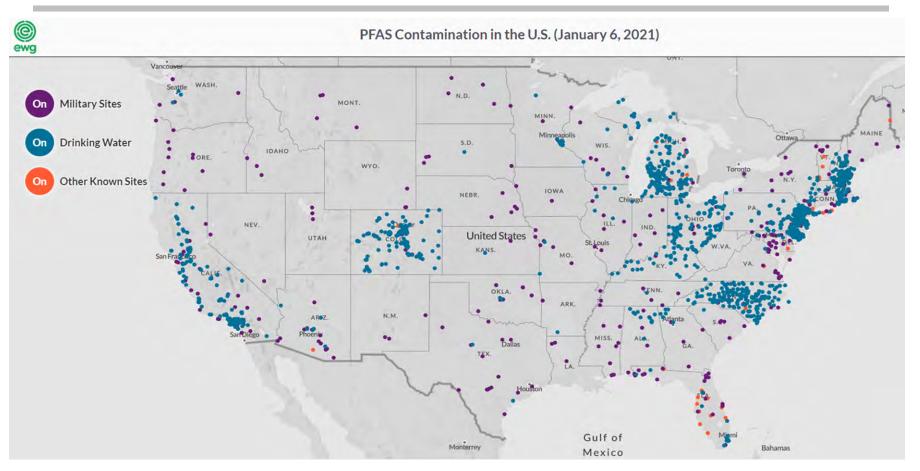
Sources

Exposure from air, dust, water, food, products

Fire training facilities, fire stations

Military bases

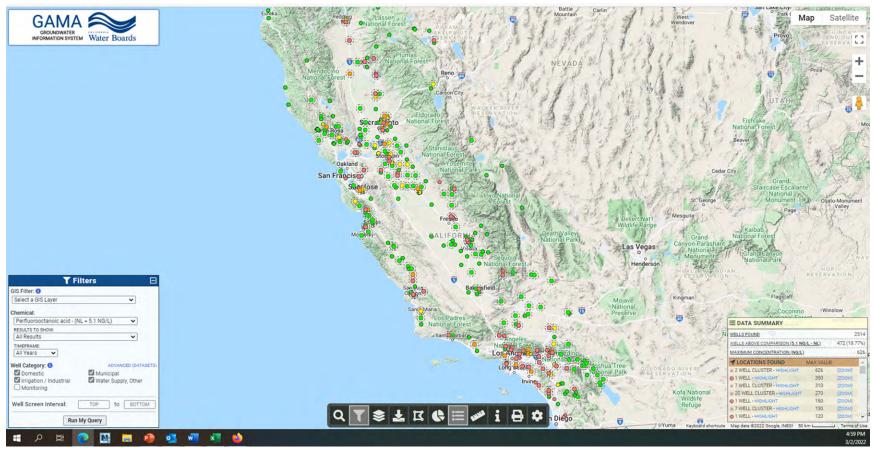
Airports


Landfills

Chemical, industrial facilities

Carpet manufacturers

Wastewater treatment plant effluent


Sources

https://www.ewg.org/interactive-maps/pfas_contamination/map/

https://www.ewg.org/interactive-maps/pfas_contamination/map/

Challenge

Think about potential sources in your region or community

PFAS

Environmental and Health Impacts

Environmental and Health Impacts 🖌

Emitted into air and water

Can enter groundwater or surface water through waste and sewage sludge disposal

Detected in waters world-wide

Found in 95% to 100% of blood samples in humans / animals

Numerous adverse health effects

PFAS

Regulations

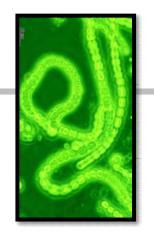
Regulations

Health Advisory Level – 70 ppt, non-enforceable (3.5 drops water in an Olympic-size pool)

2022 EPA plans to regulate PFOS/PFOA (MCL)

UCMR5 – 29 PFAS and lithium

2021 Infrastructure Bill – \$10 billion for testing/treating


Emerging Contaminants

Cyanobacteria and Cyanotoxins

General

Most algae species not harmful

- Harmful algal booms (HABs) certain species bloom excessively, produce toxins
- Different colors Red Tide, blue-green algae
- Cyanobacteria, share some algae characteristics

Causes, Detection

Photosynthetic bacteria- surface waters	Extended direct sunlight	Elevated nutrient availability (phosphorus, nitrogen)	Elevated water temperature						
pH changes	Calm, stagnant water flow, lack of vertical mixing	Initial detection is visual observation formation • surface water di brown, green) • thick, mat-like a surface and sho • fish kills	of bloom scoloration (red, ccumulations on						

Effects

Harmful to environment, animals, human health Bloom decay consumes oxygen - plant, animal die-off

Favorable conditions of light/nutrients, can produce toxins - can't tell by sight, taste, odor Intracellular / extracellular toxins – different treatments

Exposure through recreational activities; dogs, birds, livestock - consumption of contaminated water Nervous system, liver, skin

Control Measures

Aeration Mechanical mixing Reservoir drawdown Surface skimming Algaecides **Barley straw** Coagulation Flocculation

Removal

Intracellular Cyanotoxins (Intact Cells)

- Membranes
- Coagulation / Sedimentation / Filtration
- Floatation
- Pre-treatment Oxidation

Extracellular Cyanotoxins (Dissolved)

- Membranes
- Potassium
 Permanganate
- Ozone, Chloramines, Chlorine dioxide, Free chlorine
- UV Radiation
- Activated carbon

Emerging Contaminants

Microplastics and Nanoplastics

Microplastics

Modern society relies on plastic – almost all aspects of our lives

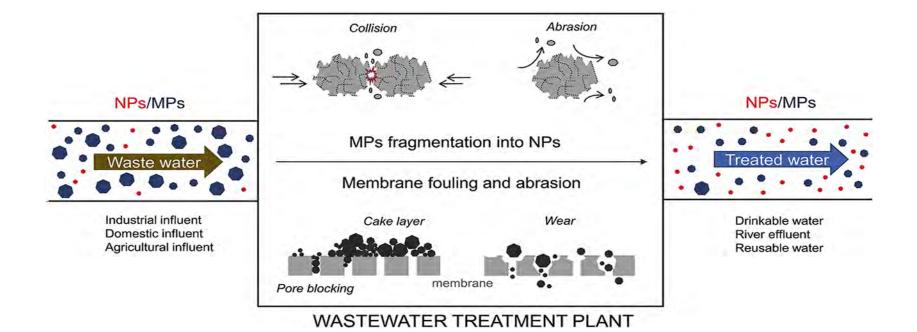
Used in everything from packaging, clothing, cars, toothbrushes

Mostly nonbiodegradable material ~400 years to break down

Microplastics and Nanoplastics

Primary micro- and nanoplastics: deliberately manufactured in products (shower gel, toothpaste)

Secondary micro- and nanoplastics: from degraded larger plastics (paints, tires, textiles) Forms: Fibers (syntheticpolyester), microbeads (cosmetics, pcp), fragments, pellets (melted-larger products)


Microplastics 1 µm-5 mm Nanoplastics 1-1000 nm

All corners of environment—land, water, air, bodies Water-processing facilities not always able to detect (nature/size)

~30% ocean plastic pollution may derive from microplastics

Microplastics and Nanoplastics

Microplastics and Nanoplastics

Solutions to limit impact on water and wastewater processes

Pre-treatments Density separation Coagulation Biodegradation

Wastewater Testing

NOBODY TOLD JAMES THAT THE FIVE SECOND RULE DIDN'T APPLY IN THEIR LINE OF WORK.

Why Test?

Public health – Preventing diseases Environmental aspects – Protecting people, fish, wildlife from pollution

Regulatory – Permits, DMRs

Process monitoring and control

Optimize and maintain physical, chemical, and biological variables affecting treatment efficiency

Determine substances that are toxic or interfere with treatment system

Remove domestic and industrial pollutants and solids from the water and return clean water, biosolids and air back to the environment

Sampling Location

Depends on regulatory requirements, plant size, complexity

Influent Effluent Mixed liquor Digester

Influent / Effluent

Influent

Raw wastewater coming in

Effluent

Treated wastewater for final discharge

Types of samples

Grab

Single sample of wastewater taken from a particular time and location

Composite Taken over time, typically 24 hours Time composite vs. flow proportioned

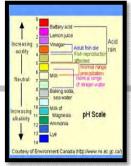
Continuous

Requires instrumentation and controls

pH, DO, turbidity, temperature, conductivity

Parameter	Container	Preservation	Maximum holding time			
Bacteria	polypropylene or glass	cool, <10 °C, 0.0008% Na₂S₂O₃	6 hours			
Volatile organic compounds	VOA vial	cool, 4 °C, 0.0008% Na2S2O3, pH < 2 with HCL	14 days			
Acidity (CaCO ₃)	plastic or glass	cool, 4 °C	14 days			
Alkalinity (CaCO ₃)	plastic or glass	cool, 4 °C				
Ammonia (as N)	plastic or glass	cool, 4°C, H2SO4 to pH<2	28 days			
Biochemical oxygen demand (BOD ₅)	plastic or glass	cool, 4 °C	48 hours			
Chemical oxygen demand (COD)	plastic or glass	cool, 4°C, H2SO4 to pH<2	28 days			
Chlorine total residual	plastic or glass		analyze immediately			
Color	plastic or glass	cool, 4 °C	48 hours			
Hardness total (CaCO ₃)	plastic or glass	HNO3 or H2SO4 to pH<2	6 months			
Hydrogen ion (pH)	plastic or glass		analyze immediately			
Kjeldahl nitrogen total (as N)	plastic or glass	cool, 4°C, H2SO4 to pH<2	28 days			
Nitrite (as N)	plastic or glass	cool, 4 °C	48 hours			
Oil and grease	glass	cool, 4°C, H2SO4 or HCl to pH<2	28 days			
Phosphorus total	glass	cool, 4 °C	48 hours			
Turbidity	plastic or glass	cool, 4 °C	www.rcac.org			

Tests - Physical Characteristics


Temperature - thermal energy contained
Color – Amounts / types of matter present – dissolved, suspended, colloidal
Turbidity - quantity of suspended / colloidal material

Odor

Tests - Chemical Characteristics

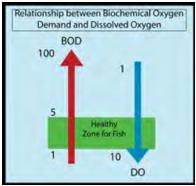
Alkalinity – ability to neutralize acid

Chemical oxygen demand (COD) – how much oxygen a sample will consume

Conductivity - ability of an aqueous solution to carry an electrical current

Dissolved oxygen (DO) - molecular oxygen present in water

Oxidation-reduction potential (ORP) - ease of electron loss or gain


pH - concentration of hydrogen ions in a solution

Tests - Biochemical Characteristics

Biochemical oxygen demand (BOD) - amount of oxygen needed to biologically oxidize material in wastewater

Pathogens (E. coli) - disease-causing organisms Viruses

Other Tests

O&G TKN Ammonia Chlorine residual Nitrate, nitrite **Total phosphorus** Solids (TS, TSS, TDS, VSS, VSS, VS, SS)

Chain-of-Custody

Possession

Clear communications and procedures from sample collection to reporting of results

Assures no sample tampering has occurred

Traceability

Shows who handled sample from collection, preservation, storage, and analysis

Chain-of-Custody

CHAIN	OF	CUSTODY	FORM
-------	----	---------	------

- L

Laboratory (name, address, ph & fax nos.) Site Laboratory (name, address, ph & fax nos.) Costact person:				Sa	Sample matrix						Sample preservation				Analysis							
				\top			OTHER SPECIFY)					+										
				1																		
Courier (name, address, ph & fax nos.) Contact person:			1	E						-	UNPRISUMED	OTHER ISPECIFY)										
Sample ID	Laboratory ID	Container	Sampling		*ATER	1	SUUDOR	ā	COMPOSITE			HNO, HCI	1KBN	ā					12			. 1
			Date	Time	**	SOIL	SLU	6	ŝ	1	2	ŝ	NS I	ŧ		1			1			
-			_							_	_	_								1		-
			-	-	+	-		-		-	+	-	-		-	-	-	-	-			-
			-	-	+	-	-	-	+ +	-	+	-	-		-		-			2		-
		-		-	+					+	+				-			-				
				200							+										1.9	
																				3		
			-	-	-			_		-	_	_	-		_							-
				-	+	-		-		-	+	-	-		-	-	-	-	-			\rightarrow
Investigator: I attest that the proper field sampling procedures were collection of these samples.				e used	durin	g the	Sampler name: (print & signature)									-	Des	ø				
Relinquished by: (print & signature) Date			Time				Received by: (print & signature)								Date		-	Time				
Relinquished by: (print & signature) Date			-	Tia	e .	_	Received by: (print & signature)							-	Date Tin		Tim					
Relinquished by: (print & signature) Date			-	The	ne .	-	Rece	ived by	: (pri	int d	sign	ature)	-	Date				Time				

Compliance – required data

- DMR daily monitoring report
- Data collection
- Frequency of analysis
 - This refers to how often you must collect and analyze samples for a particular parameter. The frequency varies by parameter but is usually designated as daily, weekly (or twice per week), or monthly.
- Sample type
 - The last column on the DMR is labeled "sample type," which indicates whether the sample is to be a composite or a grab sample.

Questions?

"Mr. Osborne, may I be excused? My brain is full."

